
A.I. Virtanen Instituutti Jussi Tohka, ESF-project S21770 1 (3)

BIDS How-to for a person converting old Bruker or Agilent dataset to BIDS format

Conversion from magnet formats to BIDS is normally easy. While using commonly used

imaging sequences, the data only must have unique identifiers for subject and session.

As for existing data, where the researcher has not been thinking about potential format-

ting issues: studies with a single dataset per subject are usually fine. In repeated

measures studies, it is quite common that subject or session naming is not fully con-

sistent.

The conversion tool for Bruker data is brkraw (). The tool works on Python 3.6. Brkraw

process has three phases: 1) collection of relevant information and representation of the

information in XLSX spreadsheet, 2) checking and correcting the information in the

XLSX sheet by the researcher, 3) conversion of data from Bruker format to rawdata

folder in NIfTI-BIDS format.

Bruker tool changes hyphens in the subject and session naming to ‘Hyphen’ and under-

scores to ‘Underscore’. This must be corrected in the XSLX file. We have chosen to

change hyphens to ‘x’ as our convention. In order to keep the list in alphabetic order, we

usually add leading zeroes (0s) to the subject and week numbers. Therefore, original

subject name, such as JPa-7-2w becomes sub-JPax007x02w.

The most convenient way of ensuring consistent naming and data locations is to per-

form the required (step 2) XLSX changes via script. That way hyphens and underscores

are always correctly converted. The same applies to potential subject or session naming

changes, as this leaves a digital trace of the changes.

We also have some experimental (still somewhat limited) script packages that convert

Agilent formats to BIDS structure.

An example Snakemake script that performs conversion from Bruker data to BIDS

structure. The command to use: > snakemake --cores 1 create_rawdata

conversion from sourcedata to rawdata - do this

separately

rule all:

 input:

 "../rawdata"

construct rawdata from sourcedata

the first brkraw round -> XLS & JSON files describing

the data

rule brkraw_preprocess:

 input:

 "../sourcedata"

 output:

 xls="project_data.xlsx",

 json="project_data.json"

 params:

A.I. Virtanen Instituutti Jussi Tohka, ESF-project S21770 2 (3)

 pre="project_data"

 shell:

 "brkraw bids_helper {input} {params.pre} -j; "

python-modifications to Excel file

rule modify_xlsx:

 input:

 "project_data.xlsx"

 output:

 "project_data_mod.xlsx"

 shell:

 "python3.9 modify_excel_file.py {input} {output}"

the second brkraw round -> source data -> rawdata

structure using modified Excel data

rule create_rawdata:

 input:

 src_data="../sourcedata",

 mod_xls="project_data_mod.xlsx",

 json="project_data.json"

 output:

 directory("../rawdata")

 shell:

 "brkraw bids_convert {input.src_data}

{input.mod_xls} -j {input.json} -o {output}"

An example script for modifying the first round XLSX file:

import pandas as pd

import os

import sys

import openpyxl

from openpyxl.utils.dataframe import dataframe_to_rows

def modify_excel_file(filename, new_filename):

 fparts = os.path.splitext(filename)

 fn = fparts[-2]

 fe = fparts[-1]

 # read the brkraw-produced excel file

 wb = openpyxl.load_workbook(fn+fe)

 ws = wb.active

 df = pd.DataFrame(ws.values)

 # write modifications here

 df = df.replace({'Hyphen': 'x'}, regex=True)

 wbn = openpyxl.Workbook()

 wsn = wbn.active

 for r in dataframe_to_rows(df, index=False,

header=False):

A.I. Virtanen Instituutti Jussi Tohka, ESF-project S21770 3 (3)

 wsn.append(r)

 for cell in wsn[1]:

 cell.style = 'Pandas'

 # save modified XLS file

 wbn.save(new_filename)

collect snakemake file names

xls_file_in = str(sys.argv[1])

xls_file_out = str(sys.argv[2])

modify_excel_file(xls_file_in, xls_file_out)

Contact: Raimo Salo, A.I. Virtanen Institute, UEF

firstname.lastname@uef.fi

mailto:firstname.lastname@uef.fi

